خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله کنترل ردیابی مسیر شبکه عصبی تطبیقی مبتنی بر ناظر برای خودروی عملیاتی

مقاله کنترل ردیابی مسیر شبکه عصبی تطبیقی مبتنی بر ناظر برای خودروی عملیاتی

عنوان مقاله فارسی: کنترل ردیابی مسیر شبکه عصبی تطبیقی مبتنی بر ناظر برای خودروی عملیاتی از راه دور

عنوان مقاله لاتین: Observer-Based Adaptive Neural Network Trajectory Tracking Control for Remotely Operated Vehicle

نویسندگان: Zhenzhong Chu; Daqi Zhu; Simon X. Yang

تعداد صفحات: 12

سال انتشار: 2017

زبان: لاتین



Abstract:

This paper focuses on the adaptive trajectory tracking control for a remotely operated vehicle (ROV) with an unknown dynamic model and the unmeasured states. Unlike most previous trajectory tracking control approaches, in this paper, the velocity states and the angular velocity states in the body-fixed frame are unmeasured, and the thrust model is inaccurate. Obviously, it is more in line with the actual ROV systems. Since the dynamic model is unknown, a new local recurrent neural network (local RNN) structure with fast learning speed is proposed for online identification. To estimate the unmeasured states, an adaptive terminal sliding-mode state observer based on the local RNN is proposed, so that the finite-time convergence of the trajectory tracking error can be guaranteed. Considering the problem of inaccurate thrust model, an adaptive scale factor is introduced into thrust model, and the thruster control signal is considered as the input of the trajectory tracking system directly. Based on the local RNN output, the adaptive scale factor, and the state estimation values, an adaptive trajectory tracking control law is constructed. The stability of the trajectory tracking control system is analyzed by the Lyapunov theorem. The effectiveness of the proposed control scheme is illustrated by simulations.

فایل هایی که پس از خرید می توانید دانلود نمائید

observer based adaptive neural network trajectory tracking control for remotely operated vehicle_1623576962_49060_4145_1241.zip2.26 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت