خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله حذف انسان با شبکه عصبی کانولوشن متنی

مقاله حذف انسان با شبکه عصبی کانولوشن متنی

عنوان مقاله فارسی: حذف انسان با شبکه عصبی کانولوشن متنی

عنوان مقاله لاتین: Human Parsing with Contextualized Convolutional Neural Network

نویسندگان: Xiaodan Liang; Chunyan Xu; Xiaohui Shen; Jianchao Yang; Jinhui Tang; Liang Lin; Shuicheng Yan

تعداد صفحات: 12

سال انتشار: 2017

زبان: لاتین


Abstract:

In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN) architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixelwise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further used for guiding the feature learning in subsequent convolutional layers to leverage the global image-level context. Third, semantic edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling. Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process. Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81.72 percent by Co-CNN, significantly higher than 62.81 percent and 64.38 percent by the state-of-the-art algorithms, M-CNN [2] and ATR [1], respectively. By utilizing our newly collected large dataset for training, our Co-CNN can achieve 85.36 percent in F-1 score.

فایل هایی که پس از خرید می توانید دانلود نمائید

human parsing with contextualized convolutional neural network_1622641317_48789_4145_1486.zip5.69 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت