خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله یک طرح امتیازدهی برای انتخاب ویژگی های آنلاین

مقاله یک طرح امتیازدهی برای انتخاب ویژگی های آنلاین

عنوان مقاله فارسی: یک طرح امتیازدهی برای انتخاب ویژگی های آنلاین: شبیه سازی عملکرد مدل بدون آموزش مجدد

عنوان مقاله لاتین: A Scoring Scheme for Online Feature Selection: Simulating Model Performance Without Retraining

نویسندگان: Debarka Sengupta; Sanghamitra Bandyopadhyay; Debajyoti Sinha

تعداد صفحات: 9

سال انتشار: 2017

زبان: لاتین


Abstract:

Increasing the number of features increases the complexity of a model even if the additional feature does not improve its decision-making capacity. Irrelevant features may also cause overfitting and reduce interpretability of the concerned model. It is, therefore, important that the features are optimally selected before a model is built. In the case of online learning, new instances are periodically discovered, and the respective model is tactically retrained as required. Similarly, there are many real-life situations where hundreds of new features are discovered periodically, and the existing model needs to be retrained or tested for its performance improvement. Supervised selection of feature subset usually requires creation of multiple suboptimal models, thus incurring time-intensive computations. Unsupervised selections, although faster, largely rely on some subjective definition of feature relevance. In this paper, we introduce a score that accurately determines the importance of the features. The proposed score is appropriate for online feature selection scenarios for its low time complexity and ability to interpret performance improvement of the current model after the addition of a new feature, without invoking a retraining.

فایل هایی که پس از خرید می توانید دانلود نمائید

a scoring scheme for online feature selection simulating model performance without retraining_1619528683_47942_4145_1395.zip2.21 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت