خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن

مقاله شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن

عنوان مقاله فارسی: شناخت عمل و رویداد در ویدیوها با یادگیری از منابع وب ناهمگن

عنوان مقاله لاتین: Action and Event Recognition in Videos by Learning From Heterogeneous Web Sources

نویسندگان: Li Niu; Xinxing Xu; Lin Chen; Lixin Duan; Dong Xu

تعداد صفحات: 14

سال انتشار: 2017

زبان: لاتین



Abstract:

In this paper, we propose new approaches for action and event recognition by leveraging a large number of freely available Web videos (e.g., from Flickr video search engine) and Web images (e.g., from Bing and Google image search engines). We address this problem by formulating it as a new multi-domain adaptation problem, in which heterogeneous Web sources are provided. Specifically, we are given different types of visual features (e.g., the DeCAF features from Bing/Google images and the trajectory-based features from Flickr videos) from heterogeneous source domains and all types of visual features from the target domain. Considering the target domain is more relevant to some source domains, we propose a new approach named multi-domain adaptation with heterogeneous sources (MDA-HS) to effectively make use of the heterogeneous sources. In MDA-HS, we simultaneously seek for the optimal weights of multiple source domains, infer the labels of target domain samples, and learn an optimal target classifier. Moreover, as textual descriptions are often available for both Web videos and images, we propose a novel approach called MDA-HS using privileged information (MDA-HS+) to effectively incorporate the valuable textual information into our MDA-HS method, based on the recent learning using privileged information paradigm. MDA-HS+ can be further extended by using a new elastic-net-like regularization. We solve our MDA-HS and MDA-HS+ methods by using the cutting-plane algorithm, in which a multiple kernel learning problem is derived and solved. Extensive experiments on three benchmark data sets demonstrate that our proposed approaches are effective for action and event recognition without requiring any labeled samples from the target domain.

فایل هایی که پس از خرید می توانید دانلود نمائید

action and event recognition in videos by learning from heterogeneous web sources_1622969735_48867_4145_1802.zip1.68 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت