خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله کد گذاری گسترده نمودار مشترک برای انتخاب ویژگی طیفی نظارت نشده

مقاله کد گذاری گسترده نمودار مشترک برای انتخاب ویژگی طیفی نظارت نشده

عنوان مقاله فارسی: کد گذاری گسترده نمودار مشترک برای انتخاب ویژگی طیفی نظارت نشده

عنوان مقاله لاتین: Robust Joint Graph Sparse Coding for Unsupervised Spectral Feature Selection

نویسندگان: Xiaofeng Zhu; Xuelong Li; Shichao Zhang; Chunhua Ju; Xindong Wu

تعداد صفحات: 8

سال انتشار: 2017

زبان: لاتین


Abstract:

In this paper, we propose a new unsupervised spectral feature selection model by embedding a graph regularizer into the framework of joint sparse regression for preserving the local structures of data. To do this, we first extract the bases of training data by previous dictionary learning methods and, then, map original data into the basis space to generate their new representations, by proposing a novel joint graph sparse coding (JGSC) model. In JGSC, we first formulate its objective function by simultaneously taking subspace learning and joint sparse regression into account, then, design a new optimization solution to solve the resulting objective function, and further prove the convergence of the proposed solution. Furthermore, we extend JGSC to a robust JGSC (RJGSC) via replacing the least square loss function with a robust loss function, for achieving the same goals and also avoiding the impact of outliers. Finally, experimental results on real data sets showed that both JGSC and RJGSC outperformed the state-of-the-art algorithms in terms of k -nearest neighbor classification performance.

فایل هایی که پس از خرید می توانید دانلود نمائید

robust joint graph sparse coding for unsupervised spectral feature selection_1622640771_48786_4145_1309.zip2.48 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت