خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله یادگیری عمیق برای توصیه های آگاهانه در شبکه های اجتماعی

مقاله یادگیری عمیق برای توصیه های آگاهانه در شبکه های اجتماعی

عنوان مقاله فارسی: یادگیری عمیق برای توصیه های آگاهانه در شبکه های اجتماعی

عنوان مقاله لاتین: On Deep Learning for Trust-Aware Recommendations in Social Networks

نویسندگان: Shuiguang Deng; Longtao Huang; Guandong Xu; Xindong Wu; Zhaohui Wu

تعداد صفحات: 13

سال انتشار: 2017

زبان: لاتین


Abstract:

With the emergence of online social networks, the social network-based recommendation approach is popularly used. The major benefit of this approach is the ability of dealing with the problems with cold-start users. In addition to social networks, user trust information also plays an important role to obtain reliable recommendations. Although matrix factorization (MF) becomes dominant in recommender systems, the recommendation largely relies on the initialization of the user and item latent feature vectors. Aiming at addressing these challenges, we develop a novel trust-based approach for recommendation in social networks. In particular, we attempt to leverage deep learning to determinate the initialization in MF for trust-aware social recommendations and to differentiate the community effect in user's trusted friendships. A two-phase recommendation process is proposed to utilize deep learning in initialization and to synthesize the users' interests and their trusted friends' interests together with the impact of community effect for recommendations. We perform extensive experiments on real-world social network data to demonstrate the accuracy and effectiveness of our proposed approach in comparison with other state-of-the-art methods.

فایل هایی که پس از خرید می توانید دانلود نمائید

on deep learning for trust-aware recommendations in social networks_1620135773_48189_4145_1394.zip1.50 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت