عنوان مقاله فارسی: از روش داویدنکو تا ژانگ دینامیک برای حل سیستمهای معادلات غیر خطی
عنوان مقاله لاتین: From Davidenko Method to Zhang Dynamics for Nonlinear Equation Systems Solving
نویسندگان: Yunong Zhang; Yinyan Zhang; Dechao Chen; Zhengli Xiao; Xiaogang Yan
تعداد صفحات:13
سال انتشار: 2017
زبان: لاتین
Abstract:
The solving of nonlinear equation systems (e.g., complex transcendental dispersion equation systems in waveguide systems) is a fundamental topic in science and engineering. Davidenko method has been used by electromagnetism researchers to solve time-invariant nonlinear equation systems (e.g., the aforementioned transcendental dispersion equation systems). Meanwhile, Zhang dynamics (ZD), which is a special class of neural dynamics, has been substantiated as an effective and accurate method for solving nonlinear equation systems, particularly time-varying nonlinear equation systems. In this paper, Davidenko method is compared with ZD in terms of efficiency and accuracy in solving time-invariant and time-varying nonlinear equation systems. Results reveal that ZD is a more competent approach than Davidenko method. Moreover, discrete-time ZD models, corresponding block diagrams, and circuit schematics are presented to facilitate the convenient implementation of ZD by researchers and engineers for solving time-invariant and time-varying nonlinear equation systems online. The theoretical analysis and results on Davidenko method, ZD, and discrete-time ZD models are also discussed in relation to solving time-varying nonlinear equation systems.
from davidenko method to zhang dynamics for nonlinear equation systems solving_1619879949_48094_4145_1055.zip1.34 MB |