عنوان مقاله فارسی: رویکرد گنجاندن نمودار برای ادغام کلمات تصویری سلسله مراتبی
عنوان مقاله لاتین: A Graph-Embedding Approach to Hierarchical Visual Word Mergence
نویسندگان: Lei Wang; Lingqiao Liu; Luping Zhou
تعداد صفحات: 12
سال انتشار: 2017
زبان: لاتین
Abstract:
Appropriately merging visual words are an effective dimension reduction method for the bag-of-visual-words model in image classification. The approach of hierarchically merging visual words has been extensively employed, because it gives a fully determined merging hierarchy. Existing supervised hierarchical merging methods take different approaches and realize the merging process with various formulations. In this paper, we propose a unified hierarchical merging approach built upon the graph-embedding framework. Our approach is able to merge visual words for any scenario, where a preferred structure and an undesired structure are defined, and, therefore, can effectively attend to all kinds of requirements for the word-merging process. In terms of computational efficiency, we show that our algorithm can seamlessly integrate a fast search strategy developed in our previous work and, thus, well maintain the state-of-the-art merging speed. To the best of our survey, the proposed approach is the first one that addresses the hierarchical visual word mergence in such a flexible and unified manner. As demonstrated, it can maintain excellent image classification performance even after a significant dimension reduction, and outperform all the existing comparable visual word-merging methods. In a broad sense, our work provides an open platform for applying, evaluating, and developing new criteria for hierarchical word-merging tasks.
a graph-embedding approach to hierarchical visual word mergence_1618750829_47571_4145_1380.zip3.02 MB |