خانه راهنمای خرید پیگیری سفارش پشتیبانی درباره ما تماس با ما
محصولات مرتبط
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
دانلود قالب پاورپوینت مهندسی کامپیوتر Computer PowerPoint
قیمت : 10,500 تومان
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
دانلود حل المسائل مهندسی نرم افزار یان سامرویل Ian Sommerville
قیمت : 50,000 تومان
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
مقاله بررسی چارچوب های یادگیری عمیق مقیاس پذیر
قیمت : 15,750 تومان
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
مقاله مروری بر معماری یادگیری عمیق برای تصویربرداری مغز مبتنی بر EEG
قیمت : 15,750 تومان

مقاله یک رویکرد خوشه ای مبتنی بر یادگیری تعاونی برای تقسیم بندی لب

مقاله یک رویکرد خوشه ای مبتنی بر یادگیری تعاونی برای تقسیم بندی لب

عنوان مقاله فارسی: یک رویکرد خوشه ای مبتنی بر یادگیری تعاونی برای تقسیم بندی لب بدون دانستن شماره قطعه

عنوان مقاله لاتین: A Cooperative Learning-Based Clustering Approach to Lip Segmentation Without Knowing Segment Number

نویسندگان: Yiu-ming Cheung; Meng Li; Qinmu Peng; C. L. Philip Chen

تعداد صفحات: 13

سال انتشار: 2017

زبان: لاتین



Abstract:

It is usually hard to predetermine the true number of segments in lip segmentation. This paper, therefore, presents a clustering-based approach to lip segmentation without knowing the true segment number. The objective function in the proposed approach is a variant of the partition entropy (PE) and features that the coincident cluster centroids in pattern space can be equivalently substituted by one centroid with the function value unchanged. It is shown that the minimum of the proposed objective function can be reached provided that: 1) the number of positions occupied by cluster centroids in pattern space is equal to the true number of clusters and 2) these positions are coincident with the optimal cluster centroids obtained under PE criterion. In implementation, we first randomly initialize the clusters provided that the number of clusters is greater than or equal to the ground truth. Then, an iterative algorithm is utilized to minimize the proposed objective function. For each iterative step, not only is the winner, i.e., the centroid with the maximum membership degree, updated to adapt to the corresponding input data, but also the other centroids are adjusted with a specific cooperation strength, so that they are each close to the winner. Subsequently, the initial overpartition will be gradually faded out with the redundant centroids superposed over the convergence of the algorithm. Based upon the proposed algorithm, we present a lip segmentation scheme. Empirical studies have shown its efficacy in comparison with the existing methods.

فایل هایی که پس از خرید می توانید دانلود نمائید

a cooperative learning-based clustering approach to lip segmentation without knowing segment number_1618321402_47486_4145_1491.zip2.19 MB
پرداخت و دانلود محصول
بررسی اعتبار کد دریافت کد تخفیف
مبلغ قابل پرداخت : 15,750 تومان پرداخت از طریق درگاه
انتقال به صفحه پرداخت